8 495 968-47-01

Работаем с 9:00 до 19:00

Патент №2715277
Авторы изобретения: А. А. 
Дергачев, А. П. Титов, Г. А. Кислухин

ЦИФРОВАЯ СИСТЕМА УПРАВЛЕНИЯ ПИРОТЕХНИЧЕСКИМИ СРЕДСТВАМИ

Изобретение относится к инициирующим устройствам для подрыва пиротехнических средств (ПС) и может быть использовано в системах управления изделий ракетно-космической техники и в авиационных системах.

Известна «Система управления пиросредствами» (патент №2558875 от 10.08.2015) содержащая пиросредства, внешний источник питания, ключевые элементы, блок управления и аналого-цифровой преобразователь, коммутатор с двумя устойчивыми состояниями и токозадающие резисторы. Принцип работы заключается в подаче по команде из блока управления напряжения с выхода внешнего источника питания через блок коммутации на ключевой элемент, и по дополнительной команде от блока управления на мостик пиросредства. При этом предварительно проводится поочередный контроль целостности каждого пиросредства с помощью аналого-цифрового преобразователя и источника тока, подключенного к шинам питания пиросредств с помощью блока коммутации. Недостатками данного устройства является применение структуры «звезда» для контроля и задействования пиросредств, что увеличивает количество кабелей и линий связи, негативно влияя на надежность и массогабаритные характеристики изделия, а также необходимость аппаратно и по времени разнести процесс контроля и задействования.

Наиболее близким аналогом по технической сущности к заявленной системе является система управления (патент на полезную модель №47508 от 27.08.05). Распределенная система управления содержит центральный прибор управления, двухканальную магистральную линию связи и множество двухканальных приборов подрыва пиросредств. Через магистральную линию связи подается силовое питание одновременно с информационными сигналами. Информационный сигнал, следуя по магистральной линии связи, поступает на множество приборов подрыва пиросредств, в каждом из которых приемное устройство декодирует и передает сигнал на логическое устройство, которое сравнивает полученный код с «зашитым» в логическое устройство кодом, и, в случае совпадения хотя бы 2-х из 3-х кодовых повторений в одном информационном сигнале, логическое устройство пропускает следующий за последним кодом сигнал на усилитель мощности. Усилитель мощности построен по схеме генератора стабильного тока, где величина тока настраивается для каждого типа пиропатрона. Усилитель мощности подключен к выходному понижающему по напряжению (повышающему по току) трансформатору, который подключен к мостикам пиросредства. Сигнал поступает на мостики пиросредства и оно задействуется.

Недостатками распределенной системы управления пиросредствами являются ограничения на качество бортовой сети питания (наличие помех и просадок), по которой осуществляется передача информационного сигнала, невозможность одновременного задействования группы пиросредств, что ограничивает ее функциональные возможности, а также проведение проверок исправности мостиков пиросредств косвенным способом без непосредственного подключения каждого ПС к измерительному устройству. Недостатки обусловлены выбором аналогового магистрального метода управления пиросредствами (последовательное управление каждым мостиком по одной, общей линии связи) и методом задействования пиросредств.

Технической задачей предлагаемого изобретения является расширение функциональных возможностей устройства, в том числе одновременное задействование нескольких ПС, повышение безопасности и надежности системы.

Для решения данной задачи в цифровую систему управления пиротехническими средствами между бортовой цифровой вычислительной машиной (БЦВМ) и блоками задействования ПС (БЗП) введена резервированная магистраль, обеспечивающая передачу цифровой информации о режимах работы и текущем состоянии БЗП. При этом БЦВМ и БЗП содержат трансформаторы гальванической развязки и приемопередатчики, обеспечивающие передачу такой цифровой информации в виде сообщений между БЦВМ и БЗП. БЗП выполнены на базе микроконтроллера, связанного с приемопередатчиком БЗП, и содержат не менее одного твердотельного реле и не менее двух электромеханических реле на тракт связи с одним ПС, причем вход твердотельного реле подключен к пиротехническим шинам питания, а выход к замыкающимся контактам электромеханических реле, управляемых микроконтроллером для коммутации мостиков ПС к пиротехническим шинам питания, а управляющие входы твердотельного реле мажоритированные и подключены к микроконтроллеру. Также в БЗП на несущую плату с микроконтроллером могут быть установлены мезонинные модули с исполнительными элементами.

Между техническим результатом и совокупностью существенных признаков предлагаемого устройства имеется следующая причинно-следственная связь:

1. Благодаря цифровой реализации магистрали расширяются функциональные возможности БЗП по контролю и задействованию конкретных ПС или их групп, появляется возможность варьирования длительности подключения пиросредств к пиротехническим шинам питания.

2. Повышение уровня безопасности и надежности (защиты от несанкционированного срабатывания пиросредств) достигается тем, что применяется магистральный метод управления отдельными функционально законченными устройствами с использованием цифровых помехозащищенных интерфейсов, а также включением в тракт задействования каждого ПС последовательно двух устройств коммутации: электромеханических реле, расположенных ортогонально для исключения влияния механических воздействующих факторов, и твердотельного реле с мажоритированными управляющими входами. Применение твердотельного реле в БЗП также повышает виброустойчивость блока и исключает несанкционированные срабатывания из-за механических воздействий.

3. Исключение отдельного центрального прибора управления, ввиду отсутствия необходимости преобразования информации в аналоговые управляющие сигналы и их передачу в исполнительные устройства (БЗП), а также применение в БЗП мезонинной конструкции при наращивании количества трактов задействования ПС, способствует уменьшению количества кабелей и улучшения массо-габаритных характеристик системы.

Структурная схема цифровой системы управления ПС представлена на фигуре 1:

1. БЦВМ;

2. Резервированная магистраль;

3. Первый БЗП;

4. Первая группа ПС;

5. Второй БЗП;

6. Вторая группа ПС;

7. N-йБЗП;

8. N-я группа ПС.

Функциональная схема БЗП представлена на фигуре 2:

9. Основная линия резервированной магистрали;

10. Резервная линия резервированной магистрали;

11. Пиротехнические шины питания;

12. Трансформатор гальванической развязки;

13. Приемопередатчик;

14. Микроконтроллер;

15. Твердотельное реле;

16. Управляющие входы твердотельного реле;

17. Цепи контроля обтекания ПС;

18. Замыкающиеся контакты электромеханического реле;

19. Электромеханическое реле;

20. Управляющие входы электромеханического реле;

21. Тракт задействования одного ПС;

22. ПС.

Система управления пиросредствами в режиме проверки работает следующим образом: после включения системы в каждом БЗП (3, 5, 7) происходит запуск программы управления микроконтроллером, которая начинает самоконтроль, при котором микроконтроллер (14) по цепям контроля обтекания ПС (17) проверяет обтекание малым током каждого тракта задействования ПС (21), независимо подключено к нему ПС (22) или нет, и формирует слово состояния с результатами прохождения контроля. БЦВМ (1) формирует в основной линии магистрали (9) сигнал соответствующий опросу каждого БЗП (3, 5, 7) в соответствии с заданной программно структурой системы задействования ПС. При этом приемопередатчик со стороны БЦВМ преобразует информацию, содержащую адрес БЗП (3, 5, 7) и требуемую команду, с помощью кодово-импульсной модуляции и передает через трансформатор гальванической развязки в резервированную магистраль (2) по основной линии (9). Сигнал, следуя по основной линии магистрали (9) поступает на все подключенные БЗП (3, 5, 7). При этом сигнал поступает на соответствующий основной линии магистрали (9) трансформатор гальванической развязки (12) в каждом БЗП (3, 5, 7), декодируется в приемопередатчике (13) и передается в кодовом виде в микроконтроллер (14), который анализирует код команды на соответствие адресу БЗП, заданному аппаратно с помощью перемычек в подключаемом соединителе, и в случае совпадения обрабатывает передаваемую команду. Микроконтроллер (14), обработав команду со своим адресом, передает в приемо-передатчик (13), соответствующий основной линии магистрали (9), слово состояния с результатами прохождения контроля и инициализирует передачу информации в БЦВМ (1). Приемопередатчик (13) кодирует информацию с помощью кодово-импульсной модуляции в сигнал для отправки и передает в трансформатор гальванической развязки (12), далее сигнал поступает в основную линию магистрали (9) и по ней на все подключенные устройства, в том числе БЦВМ (1) и БЗП (3, 5, 7). В микроконтроллере БЗП (3, 5, 7) полученное ответное слово не обрабатывается, так как оно не содержит адрес БЗП. В БЦВМ (1) сигнал поступает на трансформатор гальванической развязки, затем в приемопередатчик со стороны БЦВМ, где декодируется. В случае, если БЦВМ (1) не получает ответ от БЗП (3, 5, 7) по основной линии магистрали (9), запрос отправляется по резервной линии магистрали (10), на который БЗП должен ответить также по резервной линии магистрали (10). На основании полученной информации БЦВМ (1) анализирует состояние системы задействования ПС и формирует сообщение о состоянии системы для наземной контрольно-проверочной аппаратуры или аппаратуры, обеспечивающей проведение стартовых операций.

В режиме задействования система работает следующим образом: БЦВМ (1) формирует сообщение, содержащее адрес БЗП (3, 5, 7), к которому подключено ПС или группа ПС (4, 6, 8), и команду на задействование конкретного тракта (трактов) (21), а затем передает сформированную команду как было описано выше. При этом каждый БЗП (3, 5, 7), получив сообщение, анализирует его на соответствие своему адресу и в случае совпадения реализует следующую последовательность действий для каждого тракта указанного в сообщении: микроконтроллер (14), дает команду на переключение электромеханических реле (19), формируя сигнал высокого уровня на управляющие входы электромеханических реле (20), при этом контролирует появление разрыва в цепи обтекания ПС (17), означающего подключение замыкающихся контактов (18) к ПС (22), затем формирует мажоритированный сигнал на управляющие входы твердотельного реле (16), тем самым образуется контур протекания тока задействования от пиротехнических шин (11) к ПС (22). После снятия мажоритированного сигнала с управляющих входов твердотельного реле (16), микроконтроллер (14) снимает команду с электромеханических реле (19).

Предлагаемое техническое решение может быть реализовано следующим образом: в качестве резервированной кодовой магистрали может быть использован интерфейс по ГОСТ Р 52070-2003, обладающий высокой сбоеустойчивостью - не менее 1017 бит на один сбой, к которому могут быть подключены до 31 БЗП (3, 5, 7). Предлагаемая схема БЗП (3, 5, 7) может быть реализована с использованием микроконтроллера 1986 ВЕ1Т, трансформатора гальванической развязки ТИС1, приемопередатчика 5559ИН13У2, твердотельного реле РСК16, электромеханических реле РЭК81 и позволяет подключить к одному БЗП до 8 ПС.

Использование предлагаемого технического решения позволит увеличить функциональные возможности, в том числе одновременно задействовать несколько ПС, повысить безопасность и надежность задействования ПС с одновременным снижением массы и габаритов системы.

Поделиться: